You continue to misunderstand and repeat incorrect info about the PDP-11 and SPL. Do not talk about things you
know nothing about, at least when there are folks who know better are within earshot.
Oh, come on…
I really hope that you are not going to argue against my assertion that PDP-11 prioritized interrupts to one another at the hardware level, right.
Although I haven’t had a chance to get any personal experience with PDP-11 (ironically, we are of the same age, i.e. “born in 1969”),
I am still in a position to get the publicly available documentation.
http://gordonbell.azurewebsites.net/digital/pdp%2011%20handbook%201969.pdf
This doc is pretty long, but here is a Wiki article that makes a reference to it, and this article happens to be much shorter
https://en.wikipedia.org/wiki/PDP-11
Here is the relevant excerpt from it
[begin quote]
The PDP-11 operated at a priority level from 0 through 7, declared by three bits in the Processor Status Word (PSW), and high-end models could operate in a choice of modes, Kernel (privileged), User (application), and sometimes Supervisor, according to two bits in the PSW.
To request an interrupt, a bus device would assert one of four common bus lines, BR4 through BR7, until the processor responded. Higher numbers indicated greater urgency, perhaps that data might be lost or a desired sector might rotate out of contact with the read/write heads unless the processor responded quickly. The printer’s readiness for another character was the lowest priority (BR4), as it would remain ready indefinitely. If the processor were operating at level 5, then BR6 and BR7 would be in order. If the processor were operating at 3 or lower, it would grant any interrupt; if at 7, it would grant none. Bus requests that were not granted were not lost but merely deferred. The device needing service would continue to assert its bus request.
Whenever an interrupt exceeded the processor’s priority level, the processor asserted the corresponding bus grant, BG4 through BG7. The bus-grant lines were not common lines but were a daisy chain: The input of each gate was the output of the previous gate in the chain. A gate was on each bus device, and a device physically closer to the processor was earlier in the daisy chain. If the device had made a request, then on sensing its bus-grant input, it could conclude it was in control of the bus, and did not pass the grant signal to the next device on the bus. If the device had not made a request, it propagated its bus-grant input to its bus-grant output, giving the next closest device the chance to reply. (If devices did not occupy adjacent slots to the processor board, “grant continuity cards” inserted into the empty slots propagated the bus-grant line.)
Once in control of the bus, the device dropped its bus request and placed on the bus the memory address of its two-word vector. The processor saved the program counter (PC) and PSW, entered Kernel mode, and loaded new values from the specified vector. For a device at BR6, the new PSW in its vector would typically specify 6 as the new processor priority, so the processor would honor more urgent requests (BR7) during the service routine, but defer requests of the same or lower priority. With the new PC, the processor jumped to the service routine for the interrupting device. That routine operated the device, at least removing the condition that caused the interrupt. The routine ended with the RTI (ReTurn from Interrupt) instruction, which restored PC and PSW as of just before the processor granted the interrupt.
If a bus request were made in error and no device responded to the bus grant, the processor timed out and performed a trap that would suggest bad hardware.
[end quote]
Anton Bassov